Moduli spaces for finite - order jets of Riemannian metrics
نویسندگان
چکیده
We construct the moduli space of r−jets of Riemannian metrics at a point on a smooth manifold. The construction is closely related to the problem of classification of jet metrics via differential invariants. The moduli space is proved to be a differentiable space which admits a finite canonical stratification into smooth manifolds. A complete study on the stratifica-tion of moduli spaces is carried out for metrics in dimension n = 2 .
منابع مشابه
2 2 A ug 2 00 8 Moduli spaces for finite - order jets of Riemannian metrics
We construct the moduli space of r−jets at a point of Riemannian metrics on a smooth manifold. The construction is closely related to the problem of classification of jet metrics via differential invariants. The moduli space is proved to be a differentiable space which admits a finite canonical stratification into smooth manifolds. A complete study on the stratifica-tion of moduli spaces is car...
متن کاملASD moduli spaces over four–manifolds with tree-like ends
In this paper we construct Riemannian metrics and weight functions over Casson handles. We show that the corresponding Atiyah–Hitchin–Singer complexes are Fredholm for some class of Casson handles of bounded type. Using these, the Yang–Mills moduli spaces are constructed as finite dimensional smooth manifolds over Casson handles in the class. AMS Classification numbers Primary: 57M30, 57R57
متن کاملModuli Spaces of Einstein Metrics on 4-manifolds
In this note, we announce some results showing unexpected similarities between the moduli spaces of constant curvature metrics on 2-manifolds (the Riemann moduli space) and moduli spaces of Einstein metrics on 4manifolds. Let J? denote the moduli space of Einstein metrics of volume 1 on a compact, orientable 4-manifold M. If J£\ denotes the space of smooth Riemannian metrics of volume 1 on M, e...
متن کاملOn quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
متن کاملThe Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces
This paper generalizes the Gauss–Bonnet formula to a class of stratified spaces called Riemannian cone–manifolds. As an application, we compute the volumes of the moduli spaces M0,n with respect to the complex hyperbolic metrics introduced by Picard, Deligne–Mostow and Thurston.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009